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the precursor decays by an amount 

(81) 

Under the assumed conditions, eq. (78) also applies along the path of the 
precursor. Combining eqs. (78) and (81) yields the relation 

(82) dp ,,/dt = -lJ' /2 . 

The function lJ' is expected in general to be quite complicated. We can 
get a qualitative picture of its effect by assuming the form, for compres
sion only, 

(83) 

where T = constant. Compression by the precursor is assumed to be elastic, 
so p" of eq. (82) lies on a metastable extension of the elastic compression curve, 
p:(V). Above the yield point there is a stress p!(V) which will finally be 
reached for the given volume V after a very long time. This is curve .AB of 
Fig. 14 b). According to eqs. (82) and (83), decay of the precursor amplitude, 
p" - p!(V) continues until p;(V) = p!(V), which occurs at the static value of 
the Hugoniot elastic limit. To see the effect more explicitly, note that 

(84) 

where 0 2 = K/e, a 2 = (K + 2p,f3)/e. If Poisson's ratio, 11, is independent of 
density, so is 02/a2• Then eqs. (82)-(84) can be integrated to yield 

(85) 

where 

(86) 

Integrating eq_ (84) under the assumption that 11 = constant enables us to 
simplify eq. (85): 

(87) 

where P~L is the static value of the Hugoniot elastic limit, related to the static 
yield strength by eq. (47). 

Equation (82) was derived on the assumptions that the precursor follows 
a characteristic and that the energy equation, eq. (3), does not affect the prop-
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agation process . .A. more rigorous expression can be obtained by combining 
eq. (77) with eqs. (1)-(3) and specializing the result along the shock path [8]: 

Dp", ( U) (D-u)2-a2 op", (D-U)2 F ' 
(88) Dx = 1-15 ! (D-u) 2+a2/2 ox - D ! (D-u)2+a2/2' 

(89) F'=(I- 'XTy/2p,)F . 

Here the block derivative, D/Dx, refers to differentiation along the shock 
path, Op.,/ox is evaluated immediately behind the precursor front, and F' is 
a modification to F resulting from the assumption that a fraction 'X of plastic 
work goes into heat. In eq. (89), T is the Gruneisen parameter. F' and F 
differ by less than 10 % for metals in which plastic flow occurs. 

Under the assumptions that D-u= a and 'X= 0, eq. (88) reduces to 
eq. (82). 

Considerable effort in recent years has been devoted to attempts to relate 
the relaxation function F of eq. (75) to the motion and multiplication of dis
locations. The basic relation is 

(90) dE"/dt = hNbv = F /2p" 

where N is the number of dislocations per unit area, b is the Burgers vector, 
h is a numerical constant the order of units, and v is the mean velocity of 
dislocations. Since E" = 2e~/3 in uniaxial strain, eq. (90) becomes 

(91) del/dt = 3hNbv/2 . 

There are various models for multiplication and motion of dislocations. One 
which is frequently used is due to GILMAN: 

(92) 

(93) 

where 

v = vmax exp [-D/'f] , 

Nom = initial density of mobile dislocations, 

vmax = maximum dislocation velocity,.., v.hear , 

D = drag coefficient, 

. .it = multiplication coefficient, 

T = resolved shear stress = (p., - Pv)/2. 


